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The Generalized Method of Characteristics
for Waveform Relaxation Analysis of

Lossy Coupled Transmission Lines

FUNG-YUEL CHANG, SENIOR MEMBER, IEEE

Abstract —The transient response of lossy coupled transmission lines is

simulated by iterative waveform relaxation amdyses of equivalent dkjoint

networks constructed with congruence transformers, FFT waveform gener-

ators, and characteristic impedances synthesized by the Pad6 approxima-

tion. A phenomenal two order reductiou of CPU time and one order

savings in computer memory have been achieved. A Iossy directional

coupler is simulated for illustration.

I. INTRODUCTION

T

HE METHOD OF CHARACTERISTICS (MC) and

the method of waveform relaxation (WR) are two

seemingly unrelated computational algorithms being devel-

oped to improve efficiency in the computer-aided analysis

of large-scale electrical circuits. The MC [1] is a technique

for solving partial differential equations (PDE’s) by trans-

formation of PDE’s into ordinary differential equations

(ODE’s) along the characteristic directions, whereas the

WR method [2] is a technique for solving systems of

ODES by iteration and system decomposition. The MC

was introduced by Branin [3] for the transient analysis of

an ideal transmission line. His idea was subsequently gen-

eralized [4] and implemented in circuit simulators for the

analysis of coupled transmission lines. Since the MC was

conceived for the solution of PDE’s [5], other CAD appli-

cations of the algorithm have also been specialized for the

discrete-time simulation of distributed parameter networks

[6]-[8]. At the other extreme of development of CAD

tools, the WR method was tailored for the waveform

simulation of lumped-parameter systems, of which the

MOS integrated circuits (IC’S) have received most of the

attention [2], [9], [10].

It is the purpose of this paper to show that by generaliz-

ing the method of characteristics for waveform relaxation

analysis, time-domain simulations of lumped-parameter
networks interconnected with coupled transmission lines

can be carried out more efficiently. The generalized method

of characteristics (GMC) has been implemented in ICD

[11] on an experimental basis. In comparison to the classi-
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cal discrete-time simulation, a phenomenal two order re-

duction k computer simulation time and one order savings

in computer memory requirements have been achieved by

applying the GMC.

In this, one of a sequence of papers devoted to the

waveform relaxation analysis of distributed-parameter net-

works, we focus our attention on an n-conductor lossy

shielded stripline system which is surrounded by a homo-

geneous, leakage-free dielectric medium. The organization

of this paper is outlined as follows. It is shown in Section

II that insofar as the terminal characteristic is concerned,

the lossy stripline system is equivalent to a set of decou-

pled lossy transmission lines interconnected with congru-

ence transformers. From the equivalent circuit, canonical

expressions for the terminal voltages are derived and ex-

panded into infinite series leading to the sequence of

incident and reflected waves for the time-domain charac-

terization of the stripline system. In Section III, the classi-

cal MC is extended for deriving the equivalent 2-port

network of a lossy transmission line. Each port of the

2-port network is constructed with a lossy characteristic

impedance connected in series with a voltage source atten-

uated by the exponential propagation function of the lossy

transmission line. The lossy characteristic impedance is

synthesized by applying the Pad6 approximation, and the

exponential propagation function is simulated by the fast

Fourier transform (FFT). In Section IV, the classical MC

is generalized for waveform relaxation analysis. An itera-

tion scheme for generating the sequence of incident and

reflected waves using a circuit simulator is established. In

Section V, a three-conductor lossy directional coupler

driven by a bipolar emitter coupled logic gate (ECL) is

simulated to illustrate the advantage of the waveform

relaxation analysis over the classical discrete-time simula-

tion. Concluding remarks are contained in Section VI,

along with a description of the ongoing research work on

the generalized method of characteristics.

II. DECOUPLED EQUIVALENT CIRCUITS AND WAVE

PROPAGATION IN A LossY STRIPLINE SYSTEM

Consider an array of n parallel lossy conductors embed-

ded in a homogeneous, leakage-free dielectric medium.

Wave propagation in such a lossy stripline system is de-
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scribed by the generalized telegraphist’s equation

av(x, t) f3i(x, t)

ax
=–L

at
–zqx,t) (la)

ili(x, t) av(x, t)

8X
=–c

dt ‘
O<x<l (lb)

wherel v(x, t) and i(x, t) are column vectors defining the

voltages u~(x, t) and currents i~(x, t) on the conductors

k=l,2 . . . n. R is the diagonal matrix off the per-unit-

Iength (PUL) resistance of the conductors. L and C are

the n by n symmetric matrices of the PUL inductance and

capacitance, and

LC=’(1/V2)l~ (2)

where v is the wave propagation velocity and 1. is the

n th-order identity matrix.

Since both L and R-1/2= diag(l/~) are real, sym-

metric, and positive-definite, the same is true of the time-

constant matrix

T= R-1j2LR-112= Wdiag(r~) W-l, W-l = w’ (3)

which can always be diagonalized with positive eigenvalues

{~k} (k=l,2,3 .0. n). By defining the congruence trans-

former matrix [4]

X= R1/2 Wdiag((~) (4)

and applying the linear transformation

O(x, t) =Xe(x, t) i(x, t) = (X’) --lj(x, t) (5)

to (1) and using (2) and (3), we obtain

de(x, t) - dj(x, t)

ax
= –L

dt
–Xj(x, t) (6a)

dj(x, t) -6’e(x, t)

8X
=–c

at
(o<x< z). (6b)

Here

X= diag ( L~/~~) ~=diag(L,~)

~=diag(l/v2L~) (7)

are all diagonal matrices, { L~ } (k= 1,2. . . n) are the

arbitrary positive constants preassigned in (4), and { r~ }

are the set of eigenvalues defined in (3). Equation (6)

describes a set of n decoupled transmission lines. Thus, as

far as the terminal characteristics are concerned, the lossy

stripline system is equivalent to a set of n decoupled lossy

transmission lines connected with congruence transformers

as shown in Fig. 1. From the decoupled equwalent circuit

we can relate the input and output of the lossy stripline

1Symbols in boldface italics designate matrices and vectors. lhe super-

scripts – 1 and t denote matrix inversion and matrix transposition,

respectively. The diagonal matrix diag ( al, az, . . . . a,, ) is abbreviated as

diag(a~ ). [A],,, designates the (i, j)th element of the A matrix.

!
i{0)

VI(O
—

i 0)

v,(o)

—

[xl

2029

1

“{1)

w:
——

[xl

i .(O

W?

—

L1
j p)

Fig. 1. The decoupled equivalent circuit of an n-conductor lossy cou-

pled transmission-line system.

system by the following chain-matrix formulation:

[%1=[:A’1
[ diag (coshf3~)

“ diag [(l/ZO~) sinhd~]

[Xo’ :1[%?1

where the propagation functions { d~

diag ( ZO~sinhd~)

diag (cosh6~) 1
(8,1)

and the characteris-

tic impedance { ZOA} are defined in terms of the decoupled

transmission-line parameters:

O~=~C~(R~+sL~)l (8b)

Zok = {(R~ + sL~)/sC~ . (8e)

The chain-matrix formulation allows the transmission-line

terminal voltages to be expressed in explicit forms. To

simplify the derivation, (8a) is transformed into the follow-

ing equivalent forms:

V’(0) -ZOI(O) = @[ F’(l) -zoI(l)] (9a)

J“(l)+zol(l) = @[v(o) +zoI(o)] (9b)

where

Z.= Xdiag (ZOk )X’ (9C)

@= Xdiag [exp (– 0,)] X-l (9d)

are the characteristic impedance matrix and the exponen~-

tial propagation matrix of the lossy stripline system, re-

spectively. We assume that the stripline system is termi -

nated in Thevenin equivalent voltage sources { E~, E~ }

and impedances { ZA, ZB } as shown in Fig. 2. Thus substi-

tuting the boundary conditions

V(O) = E~ – ZAI(0) P’(l) =E, +Z,I(l)

into (9) for eliminating l(0) and 1(1), we obtain

[

I,r + Zoz; l

1[ 1

- @(ln –Zoz;l) v(o)

–(D(ln-zoz; l) In + ZOZ; I v(l)

[

_ Z’oz; 1

III

@ZoZ; 1 E~
—

@zozA ZOZ;l E~ “
(10)

2Frequency- and time-domain functions are assigned by uppercase anti
lowercase letters, respectively, such as { F’, I } and {o, i },
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Fig. 2. An n-conductor system terminating in Thevemn’s equivalent
circuit.

Solving (10) using the inversion formula3

[1
A B ‘1=
CD

.[( in– A-lBD-lC)-lA-l o
1

1 0

“[ 1In – BD-~

–CA-l 1
n

yields the canonical

terminal voltages

(IH-D-lCA-lB)-’D-ll

expressions of the transmission-line

v(o) = (In – P)-lUA (ha)

V(l) = (Z. –Q)-lUB (Ilb)

where the propagation matrices

p= (~n+PA)@PB@p~(ln +pA)-l (12a)

Q= (~. + PB)@P,@PEI(~n+ p,)-’ (12b)

simulate delay and attenuation of waveforms propagating

in the stripline system. The equivalent voltage sources

uA=(l/2)[(lH +Ppjl)(ln–pA)EA

+(l. +pA)@(ln–pB)EB]

fJB=(l/2) [(ln+pB)@(ln-pA)EA

+(IU +Qpjl)(l. – p~)E~]

are functions of the reflection matrices:

PA=(ZA– ZO)(ZA+ZO)-l

PB= (%- ZJ(ZB+ZO )-l

(13a)

(13b)

(14a)

(14b)

Thus, by expanding the canonical expression (11) into

3,4,B, C, D are n X n matrices and A, D are nonsingular. The inversion
formula can be rearranged into many equivalent forms; however, only the

present form leads to the canonicaf expression (11).
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Fig. 3. (a) An RLC transmission line and (b)
2-port network.

+

VB

its equivalent disjoint

infinite (geometric progressive) series:

v(o) = UA+ PUA + P2UA + P%JA+ ..- (15a)

V(l) =U~+QU~+Q2U~+Q3U~+ . . . (15b)

we observe that the transmission-line terminal voltages are

composed of incident and reflected waves traveling back

and forth on the conductors. The stripline terminal voltage

waveforms can be derived by taking the inverse Laplace

transform of (15), term by term. Such an analytic approach

to the transient analysis of coupled lossy transmission lines

is tedious and impractical. Instead, an iteration scheme for

generating the sequence of incident and reflection waves

using a circuit simulator will be described in Section IV.

The equivalent disjoint network structure for generating

the iterative waveforms will be described in the next sec-

tion.

111. PADJ5 SYNTHESIS AND FFT SIMULATION

OF A LossY TRANSMISSION LINE

In this section the classical MC is extended to include

the conductor loss of a transmission line. For a single lossy

transmission line, (9) degenerates to the following simple

form:

VA– ZOIA= [exp(–fl)] (V~-ZO1,) (16a)

VB+ ZOIB= [exp(–6)](V~+Z01~) (16b)

where (V’, 1A) and ( VB, lB) are the terminal voltages and

currents at the near end and the far end of the transmiss-

ion line, as shown in Fig. 3(a). The expressions for the

propagation constant and the characteristic impedance

given in (8) are repeated here with the subscript k deleted

for the simplicity of notation:

8(s) =/~1 (16c)

zo=/(R+sL)/sc. (16d)
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Fig. 4. A periodic ladder network constructed with symmetrical T net

works.

By defining

WA= [exp(– O)](V~– ZO1~) (17a)

W~= [exp(– O)](~+ZO1~) (17b)

(16a) and (16b) can be rewritten as follows:

VA = ZoI~ + WA (18a)

VB=– ZJB+WB. (18b)

Thus a lossy transmission line is equivalent to the disjoint

2-port network shown in Fig. 3(b). Eliminating 1~ from

(17a) using (18b) and eliminating 1A from (17b) using

(18a), we obtain

WA= [exp(–0)](2V~– W~) (19a)

W,=[exp(– 8)](2~– W.). (19b)

Transient analysis of a lossy stripline system can be carried

out by replacing each of the decoupled lossy line of Fig. 1

by the disjoint 2-port network of Fig. 3(b). Pad6 synthesis

of the lossy characteristic impedance 20 and the simula-

tion of WA and W~ using FFT are described in the

following subsections.

A. Pad& Synthesis of the Lossy Characteristic Impedance

Z.= ~~

The characteristic impedance 20 of an RLC transmis-

sion line can be synthesized by the driving-point impedance

of a ladder network constructed by using an infinite num-

ber of symmetrical T-network sections connected in tan-

dem as shown in Fig. 4. To estimate the truncation error of

using finite k sections for the lumped approximation of

2., the driving-point impedance of the ladder network

terminating in short circuit, open circuit, and impedance

Z~ are derived from the chain-matrix formulation, yielding

the result

.@k)==.ZO(Q:’ -l)/(Q:k+l), Z(”) = O (20a)—

~’) = ZO(Q:’ +1)/’(Q&l), Z@) + m (20b)

Z(k) = .Zo(Q:k+l –l)/(Q;~+l+ l), z(”) = z~ (20C)

2!031

where

2.(s) =/z~(z~+2zp) (21a)

Qo(s) =l+(zs/’zp)+ ~[2+(zs/zp)](zdzp) .
(2:lb)

The series and shunt impedances Z~ and ZP of the T

net work:

Z~=R$=~ (2;!a)

Zp = l/scp, c,= (2 R,/R)c = 2~/R (2~b)

are obtained by identifying (21a) with (16d). From (20) ‘we

observe that the characteristic impedance 20 is the .geo

~
k —(k)

metric mean of Z(k) and ~ ‘k): Z. = 2( ‘Z and is—

bounded below and abcwe by Z ‘k) and Z :—

Z. >#k) = Zo–2Zo/(Q;k+l)
—

20 <~k) = Zo+2Zo/(Q:k –l).

To investigate the nature of approximating Z. by Z(k), we

apply the transformations

z = R/sL y=m (23)

and substitute (22) intc~ (21) and convert (20c) into the

following expression:

z(~)(y) =zo(y)–( y--l) 2’+1(2~y)

/[(Y+ l)’k+’+(y-l)’k+l]

Thus by virtue of the factor (y – l) ’k+l, whose first 2!k

derivatives vanish at z = O, we obtain

dnZ@)(z) ~ %$)

dz n ~= o ==”

Therefore the power series

m dnz(k)(z)z(k)(z) = ~
dz “n=O

m d“Zo(z)
z“(z) = ~ ~. n

(n=o,l,2,...,C;l;l.

1

()
— Zn
n!~=o

1

()
— Zn

~=ot UL [Zco ‘!

are identical in the first (2k +1) terms. A rational function

Pn,(z)
Fm, n(z)=—=

Q.(z)

ao+a1z+a2z2+a3z3+ ., . +a~z’w

1+- b1z+b2z~+ b3z3+. ..+ bnz” -

is said to be the Pad6 (m, n )th approximation of F(z) [12]

if the polynomials PM(z) and Q.(z) are so chosen that the

coefficients in the power-series expansion of F~,. ( z ) agree

with those of F(z) from the constant term up to and

including the z m+ n term. Thus we have proved that Zfk)(z )

is the Pad6 (k, k) approximation of Zo( z ).
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B. The FFTSimulation of the Exponential

Propagation Function

Although the exponential propagation function (16c) of

a lossy transmission line can be synthesized as the voltage

transfer function of either a ladder network or a symmetri-

cal lattice network [13], we will not discuss the subject

here. Instead, we will take advantage of the extreme effi-

ciency of the FFT for deriving the waveforms of the

voltage generators:

w@(t) =F-l{exp (–6)F[2u~(t) –w~(t)]} (24a)

w~(t)=F-l{ exp(–6)F [2u. (t)–w.(t)]} (24b)

for simulating the propagation delay and the attenuation

loss of a lossy transmission line. Equation (24) is the

time-domain version of (19) and {F, F-1} denote the

Fourier and inverse Fourier integrals. Unlike the discrete-

time analysis, which requires invoking the FFT routine at

every time step, the WR analysis calls for the FFT routine

after the completion of each iterative circuit simulation

and therefore reduces the overall computer simulation

time. The voltage generator waveforms are computed at

periodic time intervals {t= k At, k = 0,1,2,. ... N – 1,

N = 2J’ } dictated by the FFT algorithm, whereas terminal

voltage waveforms are often computed at nonuniform time

intervals since the numerical integration of circuit equa-

tions with nonuniform step sizes is more efficient. Thus

data interpolation is required. Through linear interpolation

the Fourier spectrum of terminal voltage waveforms are

computed at integral multiples of the fundamental fre-

quency ~0( = l/T) by finite summation:

V(wzfo) = JTu(l)exp(– j2nnzfOt)dt
o

——(1& ‘Nf’akw;mk

k=O

(25a)

v(o) = ru(t)d
o

——
i )(~ (1/2) [u(0)+ o(T)]+ ~~lu(kT/N)

k=l )

(25b)

where

W~ = exp ( j2n-/N) (25c)

a~= (iV/T)[2u(tk) -u(t~_l)– u(t~+l)] (25d)

u(T) =u(0), u(t_~) = ~(tN_~) (t, = kT/N)

(25e)

and {V(f), u(t)}= {VA($),us(t)},{VB(f),u~(t)} for the

near-end and far-end terminal voltages, respectively. No-

tice that (25e) indicates that periodic, continuous terminal

voltage waveforms are constructed from the finite discrete

data sets obtained from the circuit simulator. From (25a)

we observe that the Fourier spectrum of a linearly interpo-

lated waveform decays in inverse proportion to the square

of the frequency if the second derivative (25d) of the

waveform is a sufficiently smooth function. Thus it be-

comes obvious that a higher order polynomial spline [14]

can be used to construct a continuous waveform whose

Fourier spectrum is almost band-limited so that the spec-

trum aliasing effect is reduced. Indeed, the Fourier spec-

trum of a periodic waveform obtained from the cubic

spline decays in inverse proportion to the fourth power of

the frequency:

V(mfo) =JTu(t)exp(– j2mmfot)dt
o

=6
(1

& 4N~1b,W~mk (26)
k=O

where { bk } are obtained by solving a tridiagonal matrix in

terms of { u(t,)}. Both (25a) and (26) can be numerically

computed by applying the FFT [15]:

H(WZ)=; ~~lh(k)W~mk (27a)
k=O

and the fundamental frequency (~. = l/T) can be made

smaller by choosing a time-window size (T) greater than

the actual time duration of the terminal voltage wave-

forms. Reducing ~. allows more samples of low frequency

spectrum to be included in the construction of the voltage

generator waveforms (24) using the inverse FFT:

N–1

h(k)= ~ H(i)WJk’ (27b)
~=o

where

H(i) ={exp[- 0( fk)]F[2u(t)- w(t)]}

as defined in (24). One should be reminded that the

spectrum aliasing effect [15] is reduced by using an almost

band-limited spectrum for reconstruction of the time-

domain waveforms.

IV. GENERALIZED METHOD OF CHARACTERISTICS

FOR WAVEFORM RELAXATION ANALYSIS

OF COUPLED LossY STRIPLINES

In Section II we derived the canonical expressions of the

lossy coupled stripline terminal voltages. An iteration

scheme for generating the infinite series expansion of the

canonical solutions defined by (15) has been programmed

and implemented in a circuit simulator. We shall describe

the computational algorithm first and then the conver-

gence theorem.

The iteration algorithm can be described vividly in terms

of the disjoint, symmetrical two-part network of Fig. 5,

which is derived from the decoupled equivalent network of

Fig. 1 with each of the n decoupled lossy transmission

lines replaced by the equivalent disjoint 2-port network of

Fig. 3(b). Each part of the two-part network consists of an

identical 2 n-terminal congruence transformer whose sec-

ondary terminals are connected to the identical set of n

decoupled transmission-line characteristic impedances. The
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Fig. 5. The equivalent disjoint two-part network of an n-conductor
lossy coupled transmission-line system.

congruence transformers are implemented in a circuit sim-

ulator with each of the primary terminals connecting to a

voltage-dependent voltage source and each of the sec-

ondary terminals connecting to a current-dependent cur-

rent source as defined by (5). The 10SSY characteristic

impedances are synthesized by the ladder network of Fig.

4 with circuit elements {R. = {~, C,= 2~/R, }

defined in terms of the decoupled lossy transmission-line

parameters. Waveforms generated by the FFT waveform

generators { w,.k–lwl~, i=l,2,3,. . . n } are stored in the

n X m matrices Wuk– 1 and w; with ii, j)th elements desig-

nating the voltage amplitudes of the i th pair of generators

recorded at t= t]:

[W)-’]i,,=lv-’(t=t )
io

[M#],,, ”=wjj(t=t,)’ (I<i<n,l<j<rn)

where the superscript k designates the iteration count and

the subscripts a and b refer to part (a) and part (b) of the

disjoint two-part network. The terminal voltage waveforms

at the end of the k th iteration are stored in the n X m

matrices vj and vi, with the (i, j)th elements designating

the near-end and far-end terminal voltages of the ith

conductor at t= t,:

[4,7,=dl~=o,t =t )

[dl>,=f(x=o=tj (l<i<n,l<j<m)

where the subscripts a and b refer to the near-end and

far-end terminals of the stripline system, respectively. The

initial terminal voltages and currents are designated by the

hich can be derived bycolumn vectors vaO,v~o, iao, i~o, w

performing a dc analysis on the stripline system with each

transmission line replaced by a resistor representing the

total conductor loss of the transmission line. Exact initial

terminal characteristics are reproduced by the two-part

network by assigning the FFT waveform generators with

the initial values

Wao= X–%ao – diag((2mi + l)~~)x’iao

Wbo= x ‘1%0 + diag((2mZ +l)@~)Xti~o.

These are derived by replacing each Iossy characteristic

2033

impedance by the dc driving-point impedance of the equiv-

alent ladder network constructed with m, sections of sym-

metrical T networks and assigning the two-part network

with the exact terminall characteristics. Refer to Fig. 5: The

iteration algorithm is described below.

Combined MC and Wlt Algorithm (Gauss -Seidel Type)

Step 0: Initialize the iteration counter (k= 1) and the

FFT waveform generators:

‘k-l[;ll = %-’(tl=o) = ‘.0a

Wf[; l] = Mf(tl=o) = Mjo

so that the waveform relaxation analysis reproduces exact

initial terminal characteristics. Generate the Fourier spec-

trum of the exponential propagation functions of the n

decoupled lossy transmission lines and store the data in

the array [H]l, ~ = exp[.- O1(s= ~,)].

Step 1: Connect the terminating network A of Fig. 2 to

part (a) of the two-part network of Fig. 5 and carry out the

transient analysis for the entire time interval (O = tl< t<

tm) to obtain the near-end terminal voltage waveforms

{ o$(t)}.Store the result in the matrix v:.

Step 2: Compute { M#(t)} from { vj(t)} and { W$-l(,t)}

by the FFT and the inverse FFT5 and store the result in

the array:

wf=F–l{H*F[2x–lvf– W&q},

Step 3: Connect the terminating network B of Fig. 2 to

the part (b) of the’ two-part network and carry out the

transient analysis for the entire time interval (O < tl:<t
< tm) to obtain the far-end terminal voltage wavef orlms

{of(t)}. Store the result in the matrix o!.
Step 4: Update W$ in terms of {of(t)} and { w$(t)}by

the FFT and the inverse FFT:

Step 5: Stop the iteration if the iteration count exceeds

a preset integral number or if the difference between the

results obtained in successive iterations is sufficiently small.

Otherwise, set k = k + 1 and go to step 1 to repeat the

iteration process.

Convergence Theorem of the Combined MC and WR

Algorithm (Gauss – Seidel Type): For an n-conductor lossy

stripline system terminating in the Thevenin’s equivalent

circuits of Fig. 2, the combined MC apd WR algorithm

generates a sequence of waveforms { t$(t)},{of(t)}con-

verging to the exact SOIUtion of the terminal voltages given

by (11).

Proofi The theorem will be verified in terms of f~e-

quency-domain parameters. Refer to Figs. 2 and 5. Tlhe
k th iteration step of the MC and WR algorithm is trans-

formed into the following system of matrix difference

4A [J;] and ,4 [; j] designate the i th row and jth column of the A
matrix, respectively.

‘Term-by-term product of two matrices A and B of identical order is

defined as C=A * B with [Cl,,, = [A]l,, X[B],,,.
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equations:

l“’’(s) = (1/2)[(ln - p.)l?. +(ln + q)x??’p(s)]

(28a)

XW$(S)= !3[2V-(S) -XW:-’(S)] (28b)

v;(s) = (1/2) [(zn–pB)EB +(zn+pB)xw;-’(.s)]

(28c)

xw’:(.Y) =@[2J’’[(s) -xw’J(s)] (28d)

where @ and { PA, p~ } are defined in (9d) and (14). Equa-

tion (28) can be solved by successive elimination of vari-

ables, leading to the solution

V:+l=UA+PV:(S) (29a)

V~+l=U~+QF’;(s) (29b)

where { P, Q } and { UA,U~} are identified as the propaga-

tion matrices and the equivalent voltage sources defined in

(12) and (13). From (28a), we obtain

v;(s) = (1/2) [(lM–pA)EA +(ln+pA)x(l/.s) wao]

where (1/.s ) WaOis the vector step function generating the

correct initial near-end terminal characteristics of the

stripline system as described in step O of the MC and WR

algorithm. Thus by carrying out repeated substitutions into

(29a), we obtain the following sequence of waveforms:

v-(s) =UA+ F’J~(s)

v;(s) = (In+ P)UA+ PaV;(s)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

)v-j=(s)= (In+ P+P2+ . . . +Pk’2 UA+ F%q(s)

= (In- p’-’)(lP)PluA+P~Piv;(s)s)

which is identical to (15a) except for the residue term

Pk - lV~(s ) related to the initial condition of the stripline

system. Similarly, we obtain

v;(s) = (2,r– Qk-l)(ln –Q)-lUB+Qk-lV;(S)

which is identical to (15b) except for the residue term

Qk - 1V;(.S ). For k approaching infinity, the residue terms
vanish if the eigenvalues of the propagation matrices

(P, Q} are confined in the left half of the s plane, which is
usually the case for a stable system. This completes the
proof of the theorem.

In the next section, a three-conductor lossy directional

coupler driven by a bipolar ECL gate is simulated to

illustrate the advantage of the waveform relaxation over

the classical discrete-time simulation.

V. WAVEFORM RELAXATION ANALYSIS OF A LossY

DIRECTIONAL COUPLER

Let us start this section by stating an important direc-

tional coupler theory. The proof and the experimental

verification of the theory can be found in [17].

Distortionless Signal Transmission Theory: In a tricon-

ductor lossless transmission-line system of length 1, wave

propagation velocity v, and PUL transmission-line param-

eters { L,l } and { C,j }, each signal generator {e,(t), i =

1,2, 3} applied to a sending terminal (x= O) will produce

at the corresponding far-end terminal (x = 1) an output

with the identical generator waveshape if the internal

resistors { r,fl } of the generators and the load resistors { rz~}

are adjusted to the values

2A = diag(rla, ra., rJ. )

= rladi% [l(L23c13/c23L13) (L23c12/c23L,2)l

ZB = diag (rl~, r2~, r~~)

= (L~~L~sCas/ClaC13 LZ3)(l/rla)2Z~

where rl. is defined by the quadratic equation

30a)

30b)

r~~ + alrl~ + a. = O (30C)

with parameters

a.= (L12/C12)(L13/C13 )( C23/L23) (30d)

al= – VL1l[l+ ao(C1l/L1l)]. (30e)

Under such a terminating condition, the receiving signals

across the load resistors are delayed and attenuated by the

same magnitudes:

ul(t,l) = –(a.O/alrla) el(t- l/v) (i=l,2,3). (31)

In the following example we shall examine the effect of

the conductor loss on such a distortionless signal transmis-

sion property of a triconductor directional coupler.

Consider a triconductor stripline system of length 1=

10JT cm, wave propagation velocity v = C. 1010 cm/s,

and transmission-line parameters

L=[o!5 : OilWCm

[

–lo –4

IC = (1/24) – ~ 35 – 10 pF/cm.

–4 – 10 44

The center conductor and the active outer conductor m-e

connected to the in-phase and the out-of-phase outputs of

a bipolar ECL gate as shown in Fig. 6. The inactive outer

conductor is connected to ground via r~..

Case I — Los.less Conductors: R = diag (0, O, O)

From (30) we obtain the terminating resistors

ZA = 5fi diag(5,4,5) ZB =12fidiag(5,4,5) ~

(32a)

for distortionless signal transmission. The ECL gate output

signals arrive at the far-end terminals with 1 ns delay and

are attenuated by a factor of 17/12:

uz(t,l)= (12/17) e,(t–l)u(t–1) (i=l,2). (32b)

The distortionless signal transmission property can also be

verified from (llb). Thus substituting ZA, ZB and ZO = VL
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f
R3a

. ~

il[l[ll.RICA 35.35 Rlb ux-

R2CL= 28.28J R2b = 6’i%$
R3a 35.35 R3b ~~

Fig. 6. A three-conductor lossy directional coupler driven by a bipolar

ECL gate.

into (14), we obtain the reflection matrices:

[- 1

52
p~ = – (1/34) 4 10 4

2 52

[-: 1

–5 –2

PB = (1/34) :i 4 –4
–5 12

which reveal the orthogonal property of the reflection

matrices pAp~ = O. Equation (1 lb) degenerates into the

simple form

V(l) = (12/17) exp(–sT)EA(s), ~=lns

which is the Laplace transform of (32b).

Case 2 — Lossy Conductors: R = diag (2, 4,2) Q/cm

To obtain the equivalent decoupled circuit (Fig. 1) and

the two-part disjoint network (Fig. 5) for analyzing the

transient response of the lossy stripline system, we proceed

as follows.

Step 1: By using the Jacobi method [16], we diagonalize

the time-constant matrix:

[1

601
~=~-V2LR-V2= (1/4) ~ 4 0

lfi6

=Wdiag(,l, ~,, ~,) W-’

[w’w=(l/m) –’2~

J,J-l = JJ7r,
71,72, T3 = (3/4,5/4,2) ns.

Step 2: Let (Ll, Lz, L~) = (5/3, 5, 5/2) nH/cm and ob-
tain the congruence transformer matrix:

X = R1/2 Wdiag (~~~, ~~, fiz)

[ 3 -! !1-

= (1/10) -1:

0.0

FL’’--”2 4 6 8 10

-0.1

-0.2

TIFE(NS)+

(a)

0.1

k“’’’”

ooooooo:I~ ~ wmEFcRl

+$ e2(t-i~

0.0
2 4 6 8 10

-0.1 v@)
-0.2

TIPE(NS)+

(b)

Fig. 7. Distortionless signaf transmission in a lossless triconductor sys-
tem. (a) ECL gate out-of-phase output and its delayed waveform.
(b) ECL gate in-phase output and its delayed waveform.

Step 3: Obtain from (’7) the decoupled transmission-line

parameters:

Step 4:

(Ll, L2, Ls) ==(5/3,5,5/2) nH/cm

(C1, C2, C,) ==(3,1,2) pF/cm

(R,, Rz, R,)== (20/9,4,5/4) Q/cm.

Obtain from (22) the circuit parameters:

(%> Rz,, R,.)= (23.57,70.71,35.35) Q

(CIPt C2P, C,p) = (63.64,35.35,113.14) pF

of the symmetrical T networks for the Pad6 synthesis of

the characteristic impedances of the decoupled Iossy trans-

mission lines.

Step 5: Derive the propagation functions of the decou-

pled lines:

{o(s) = (sZ/V)fi+(l/sTi) )

= s(Jm/%, Jm,J~)

where S = normalized angular frequency =10 – 9 ja.

Shown in Figs. 7 and 8 are the ECL gate outputs and

the receiving-end waveforms simulated with and without

the conductor loss. The distortionless transmission prop-
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erty is evident in the lossless system and is remarkably

preserved even in the presence of the conductor loss. The

lossless system is simulated by the classical MC, which

takes up 15.19 seconds of computer simulation time and

uses 273 kbytes of memory, which includes 156 kbytes for

loading the circuit simulator (ICD) into the IBM 3090

computer. The penalty of using the classical MC for ana-

lyzing the lossy stripline system is severe. It took 635

seconds of CPU time and used up 2 megabytes of com-

puter memory. The waveforms in Fig. 8 are obtained by

discrete-time simulation with very small time steps, and 40

sections of lossless lines cascaded with lumped resistors are

used for simulating the distributed nature of the conductor

loss. Waveforms obtained from the iterative relaxation

analyses are shown in Fig. 9. The waveform relaxation

analyses consumed 22.1 seconds and used 233 kbytes of

memory. From the simulated waveforms, we observe that

two iterations are sufficient to obtain the convergent solu-

tions. To estimate the accuracy of the waveform relaxation

analysis, it is assumed that the waveform u(t) obtained

from the discrete-time analysis with very small time steps

(shown in Fig. 8) is exact, and the average absolute differ-

ence between the waveforms obtained by relaxation and

discrete-time analyses:

[ 1/8=fTl@-@)]dr /T
o

is defined as the absolute error of the waveform U(t)

obtained from WR analysis. It is observed that the accu-

racy of the GMC can be enhanced by lowering the funda-

mental frequency (~. =1/ T’, T’ > T) of spectrum sam-

pling so that more samples of low frequency spectra are

included in the construction of the time-domain wave-

forms.

Table I presents the absolute errors of the (center-con-

ductor) receiving-end waveforms generated by the GMC

using various FFT samples and time-window enlargement

factors ( T’/T). Observe that enlarging the time-window

size for improving the accuracy of FFT would work only if

the number of sampled data points used in the FFT were

no less than N = 256. We use the directional coupler as an

example to demonstrate the accuracy of the waveform

relaxation method. As shown in Fig 9, the receiving signal

at the far end of the inactive outer conductor has a peak

amplitude 10 times smaller than that observed at the two
ends of the center conductor. Here, the mean absolute

difference between the waveform relaxation and discrete-

time analyses is measured in tenths of millivolts. The

extreme accuracy of the waveform relaxation is achieved

by reducing the spectrum aliasing effect in the FFT by

using nearly band-limited interpolated waveforms.

VI. CONCLUSIONS

An efficient method for computing the transient re-

sponse of an n-conductor lossy coupled transmission line

system is presented. The method consists in performing

0.2 ~

0.1 -

-0.1 -

-0.2 -

TIK(NS)+

(a)

0.3 -

e..a.ae. eo:I~ JXIJWED WNEFCRI
0.2 -

0.1 -

0.0

I

–cl. 1

-0.2
r

TIK(&)+

(b)

Fig. 8. Almost distortionless signal transmission in a 10SSYtriconductor

system. (a) ECL gate out-of-phase output and its delayed waveform.

(b) ECL gate in-phase output and its delayed waveform.

waveform relaxation analysis on the equivalent two-part

disjoint network of the coupled-line system derived from

the congruence transformation theory and the method of

characteristics. The Pad+ synthesis of the irrational lossy

characteristic impedance function and the fast Fourier

transform for simulating the wave propagation delay and

attenuation have been utilized to enhance the method of

characteristics for the analysis of coupled distributed net-

works. Although the method of characteristics dates back

to the 1747 classic work of D’Alembert, it was not until

Branin’s pioneering work on the analysis of an ideal trans-
mission line that it was transformed into an indispensable

tool for the computer-aided analysis of coupled distributed’

networks. Here, we have opened up yet another horizon by

generalizing the method of characteristics for the wave-

form relaxation analysis. In separate articles, we shall

explore many other applications of the generalized method

of characteristics, which include waveform relaxation anal-

yses of the diode switching characteristics [18], an RLCG

transmission line [13], VLSI circuits interconnected with

coupled transmission lines [19], and nonuniform transmis-

sion lines [20].
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Fig. 9. Waveforms generated by the iterated waveform relaxation analyses. Waveforms at l.he far-end termimd of the (a)
active outer conductor, (b) center conductor, and (c) inactive outer conductor.
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TABLE I

$’: absolute error(mv) % Cpu
N 1’ ‘ /1’=2 T’/T=4 T ‘ /T=8 ml?

32 14.00 I 9.00 I 23.82 0.45
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