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The Generalized Method of Characteristics
for Waveform Relaxation Analysis of
Lossy Coupled Transmission Lines

FUNG-YUEL CHANG, SENIOR MEMBER, IEEE

Abstract — The transient response of lossy coupled transmission lines is
simulated by iterative waveform relaxation analyses of equivalent disjoint
networks constructed with congruence transformers, FFT waveform gener-
ators, and characteristic impedances synthesized by the Padé approxima-
tion. A phenomenal two order reduction of CPU time and one order
savings in computer memory have been achieved. A lossy directional
coupler is simulated for illustration.

I. INTRODUCTION

HE METHOD OF CHARACTERISTICS (MC) and

the method of waveform relaxation (WR) are two
seemingly unrelated computational algorithms being devel-
oped to improve efficiency in the computer-aided analysis
of large-scale electrical circuits. The MC [1] is a technique
for solving partial differential equations (PDE’s) by trans-
formation of PDE’s into ordinary differential equations
(ODFE’s) along the characteristic directions, whereas the
WR method [2] is a technique for solving systems of
ODEFE’s by iteration and system decomposition. The MC
was introduced by Branin [3] for the transient analysis of
an ideal transmission line. His idea was subsequently gen-
eralized [4] and implemented in circuit simulators for the
analysis of coupled transmission lines. Since the MC was
conceived for the solution of PDE’s [5], other CAD appli-
cations of the algorithm have also been specialized for the
discrete-time simulation of distributed parameter networks
[6]-[8]. At the other extreme of development of CAD
tools, the WR method was tailored for the waveform
simulation of lumped-parameter systems, of which the
MOS integrated circuits (IC’s) have received most of the
attention {2], [9], [10].

It is the purpose of this paper to show that by generaliz-
ing the method of characteristics for waveform relaxation
analysis, time-domain simulations of lumped-parameter
networks interconnected with coupled transmission lines
can be carried out more efficiently. The generalized method
of characteristics (GMC) has been implemented in ICD
[11] on an experimental basis. In comparison to the classi-
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cal discrete-time simulation, a phenomenal two order re-
duction in computer simulation time and one order savings
in computer memory requirements have been achieved by
applying the GMC.

In this, one of a sequence of papers devoted to the
waveform relaxation analysis of distributed-parameter net-
works, we focus our attention on an n-conductor lossy
shielded stripline system which is surrounded by a homo-
geneous, leakage-free dielectric medium. The organization
of this paper is outlined as follows. It is shown in Section
1T that insofar as the terminal characteristic is concerned,
the lossy stripline system is equivalent to a set of decou-
pled lossy transmission lines interconnected with congru-
ence transformers. From the equivalent circuit, canonical
expressions for the terminal voltages are derived and ex-
panded into infinite series leading to the sequence of
incident and reflected waves for the time-domain charac-
terization of the stripline system. In Section III, the classi-
cal MC is extended for deriving the equivalent 2-port
network of a lossy transmission line. Each port of the
2-port network is constructed with a lossy characteristic
impedance connected in series with a voltage source atten-
uated by the exponential propagation function of the lossy
transmission line. The lossy characteristic impedance is
synthesized by applying the Padé approximation, and the
exponential propagation function is simulated by the fast
Fourier transform (FFT). In Section 1V, the classical MC
is generalized for waveform relaxation analysis. An itera-
tion scheme for generating the sequence of incident and
reflected waves using a circuit simulator is established. In
Section V, a three-conductor lossy directional coupler
driven by a bipolar emitter coupled logic gate (ECL) is
simulated to illustrate the advantage of the waveform
relaxation analysis over the classical discrete-time simula-
tion. Concluding remarks are contained in Section VI,
along with a description of the ongoing research work on
the generalized method of characteristics.

II. DEecOUPLED EQUIVALENT CIRCUITS AND WAVE
PROPAGATION IN A LOSSY STRIPLINE SYSTEM

Consider an array of n parallel lossy conductors embed-
ded in a homogeneous, leakage-free dielectric medium.
Wave propagation in such a lossy stripline system is de-
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scribed by the generalized telegraphist’s equation

do(x,1) I di(x,1) Ri

P PR i(x,1) (1a)
di(x, 1) do(x,1)

S =-C—=, Osx<l (1b)

where! v(x,t) and i(x, t) are column vectors defining the
voltages v, (x,¢) and currents i,(x,¢) on the conductors
k=1,2---n. R is the diagonal matrix of the per-unit-
length (PUL) resistance of the conductors. L and C are
the n by n symmetric matrices of the PUL inductance and
capacitance, and

LC=(1/»?)1, (2)

where v is the wave propagation velocity and 1, is the
nth-order identity matrix.

Since both L and R™/?=diag(1/yR,) are real, sym-
metric, and positive-definite, the same is true of the time-
constant matrix

T=R LR ?=wWwdiag(r, )W, W l=w' (3)

which can always be diagonalized with positive ecigenvalues
{7} (k=1,2,3-..n). By defining the congruence trans-
former matrix [4]

X = RV*w diag(yfr, /L, )

and applying the linear transformation

i(x,1)= (X)) j(x,1) (5)

to (1) and using (2) and (3), we obtain

(4)

o(x,t) = Xe(x,1)

de(x,t) ~3j(x,1) ~
=—L —Rj(x,t 6
. PP J(x, 1) (6a)
j(x,t)  ~de(x,t)
=, (0<x<lI). (6b)
Here
R=diag(L,/7,) L=diag(L,)

C=diag(1/»°L,) (7)
are all diagonal matrices, {L,} (k=1,2---n) are the
arbitrary positive constants preassigned in (4), and {7}
are the set of eigenvalues defined in (3). Equation (6)
describes a set of # decoupled transmission lines. Thus, as
far as the terminal characteristics are concerned, the lossy
stripline system is equivalent to a set of n decoupled lossy
transmission lines connected with congruence transformers
as shown in Fig. 1. From the decoupled equivalent circuit
we can relate the input and output of the lossy stripline

'Symbols in boldface italics designate matrices and vectors. The super-
scripts —1 and ¢ denote matrix inversion and matrix transposition,
respectively. The diagonal matrix diag(ay, a,,-- -, a,) is abbreviated as
diag(ay). [4], , designates the (i, j)th element of the A matrix.
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Fig. 1. The decoupled equivalent circuit of an n-conductor lossy cou-

pled transmission-line system.

system by the following chain-matrix formulation®:

vo ] [x 0
[1(0)}‘[0 (X')”}

diag(coshé,) diag( Z,, sinhé, )
| diag[(1/Z,,)sinh6,]  diag(cosh#,)
XU o \[v)
[ 0 X [1(1)] (82)

where the propagation functions {6, } and the characteris-
tic impedance { Z,, } are defined in terms of the decoupled
transmission-line parameters:

0, =C, (R, +sLy) ! (8b)

Zow =y( R, +sLy)/sC, . (8¢c)

The chain-matrix formulation allows the transmission-line

terminal voltages to be expressed in explicit forms. To

simplify the derivation, (8a) is transformed into the follow-
ing equivalent forms:

V(0)—Z,I(0) = D[V (1) — Z,I(1)] (9a)

V(1)+ Z,(1) = ®[V(0)+ Z,1(0)] (9b)

Z,= Xdiag(Zy, ) X" (9¢)

@ = Xdiag[exp(—6,)] X! (9d)
are the characteristic impedance matrix and the exponen-
tial propagation matrix of the lossy stripline system, re-
spectively. We assume that the stripline system is termi-
nated in Thevenin equivalent voltage sources {E,, Ez}
and impedances {Z,, Z;} as shown in Fig. 2. Thus substi-
tuting the boundary conditions

V(0)=E,— Z,I(0) V(l)=Ez+ ZyI(I)
into (9) for eliminating 7(0) and I(/), we obtain

where

1,+Z,Z;’ -&(1,- 2,25) || V(0)
| -e(1,-2,21) 1,+ Z,Z51 V(i)
Z2,Z;' ®Z,Z;'||E
— 0~ A4 0B A ) (10)
8Z,Z, Z2,7;' ||E,

72Frequency- and time-domain functions are assigned by uppercase and
lowercase letters, respectively, such as {V,I'} and {v,i}.
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Fig. 2. An n-conductor system terminating in Thevenin’s equivalent
circuit.

Solving (10) using the inversion formula®

£ 31"

c D

[(1,-47BD'C) 4 0

] 0 (1,-D'C4'B) 'D*
(1, —BD!

-_—CA’l 1,

yields the canonical expressions of the transmission-line
terminal voltages

v(0)=(1,- P) ', (11a)
V()=(1,-0) 'Us (11b)

where the propagation matrices
P=(1,+0p,)®0;®@0,(1,+0,) " (12a)
Q=(1,+p5) B0, Po5(L, +05)""  (12b)

simulate delay and attenuation of waveforms propagating
in the stripline system. The equivalent voltage sources

U= (1/2)[(1,+ Pos*)(1,- 0,)E,

+(1,+0)®(1,—ps)Es]  (132)
Uy = (1/2)[(1,+ 05) (1, ~ 0 E,
+(1,+ @0z )(1,~ 05) E5]  (13b)
are functions of the reflection matrices:
py= (ZA_ZO)(ZA+Z0)_1 (14a)
o= (Zy = Z,)(Z,+ Z;) (14b)

Thus, by expanding the canonical expression (11) into

4, B,C. D are n X n matrices and A4, D are nonsingular. The inversion
formula can be rearranged into many equivalent forms; however, only the
present form leads to the canonical expression (11).
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Fig. 3. (a) An RLC transmission line and (b) its equivalent disjoint

2-port network.

infinite (geometric progressive) series:
V(0) =U,+ PU,+ P*U,+ P°U,+ - --
V(1) =Uy+ QUy+ Q*Up + Q*Up + - - -

(15a)
(15b)

we observe that the transmission-line terminal voltages are
composed of incident and reflected waves traveling back
and forth on the conductors. The stripline terminal voltage
waveforms can be derived by taking the inverse Laplace
transform of (15), term by term. Such an analytic approach
to the transient analysis of coupled lossy transmission lines
is tedious and impractical. Instead, an iteration scheme for
generating the sequence of incident and reflection waves
using a circuit simulator will be described in Section IV.
The equivalent disjoint network structure for generating
the iterative waveforms will be described in the next sec-
tion.

III. PaDE SYNTHESIS AND FFT SIMULATION

OF A L0OssYy TRANSMISSION LINE

In this section the classical MC is extended to include
the conductor loss of a transmission line. For a single lossy
transmission line, (9) degenerates to the following simple
form:

Vi—Z2yl,= [exp(— 0)](VB_ ZOIB)
Ve+ Zoly=[exp(— O(Vy+ Zo1,)

(16a)
(16b)

where (V,, 1,) and (Vy, I;) are the terminal voltages and
currents at the near end and the far end of the transmis-
sion line, as shown in Fig. 3(a). The expressions for the
propagation constant and the characteristic impedance
given in (8) are repeated here with the subscript k deleted
for the simplicity of notation:

6(s) =ysC(R+sL)I (16¢)
Zy=y{(R+sL)/sC. (164)
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Fig. 4. A periodic ladder network constructed with symmetrical T net
works.

By defining
W= [CXP("o)](VB_ZOIB)
Wy= [eXP(_a)](VA+ZolA)

(17a)
(17b)
(16a) and (16b) can be rewritten as follows:

V,=Z,1,+W, (18a)
Vy=—Zylp+ W,. (18b)

Thus a lossy transmission line is equivalent to the disjoint
2-port network shown in Fig. 3(b). Eliminating I, from
(17a) using (18b) and eliminating 7, from (17b) using
(18a), we obtain

W, = [exp(~ a)](zVB“ W)
W= [exp (~ 0)] 2V~ W,).

(19a)
(19b)

Transient analysis of a lossy stripline system can be carried
out by replacing each of the decoupled lossy line of Fig. 1
by the disjoint 2-port network of Fig. 3(b). Padé synthesis
of the lossy characteristic impedance Z, and the simula-
tion of W, and W, using FFT are described in the
following subsections.

A. Padé Synthesis of the Lossy Characteristic Impedance
Zy=y(R+sL)/sC

The characteristic impedance Z, of an RLC transmis-
sion line can be synthesized by the driving-point impedance
of a ladder network constructed by using an infinite num-
ber of symmetrical T-network sections connected in tan-
dem as shown in Fig. 4. To estimate the truncation error of
using finite k sections for the lumped approximation of
Z,, the driving-point impedance of the ladder network
terminating in short circuit, open circuit, and impedance
Z are derived from the chain-matrix formulation, yielding
the result

Z9=z(ed -0 1), Z0=0 ()
2 -0 /(0 -1 20 (00)
Z0=2,(QF 1 -1)/(QF +1). 207 (0
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where
Zy(s) =\2s(Zs+22,) (21a)
Qols) =1+(Zs/Zp) +[2+(25/Zp)[(Z5/ Zs) -
(21b)

The series and shunt impedances Zg and Z, of the T
network:

Zs=R,=L/C (22a)
Z,=1/sC,.  C,=(2R,/R)C=2/LC /R (22b)

are obtained by identifying (21a) with (16d). From (20) we
observe that the characteristic impedance Z, is the geo

metric mean of Z( ) and Z ¥ Zy= \/Z(k)f(k) and is
bounded below and above by Z ® and Z%:

Z,>2"=2,-27,/(03" +1)
2,<Z" = Zy+22, /(0% -1).

To investigate the nature of approximating Z, by Z®, we
apply the transformations

z=R/sL =yz+1 (23)

and substitute (22) into (21) and convert (20c) into the
following expression:

Z0(y)=Zo(»)~(y=1)* " (2yL/Cy)
/[(y +1)2k+1+ (y _1)2k+1]_

Thus by virtue of the factor (y —1)***1, whose first 2k
derivatives vanish at z = 0, we obtain

d"z®(z) d"Z,(z
— == ( ) (n=0,1,2,---,2k).
z z=0 z z=0
Therefore the power series
o d"Z(") z 1
2o - § L8 (L)
n=1{_ !
© d"Z,(z 1
z(:)= X -—%—) (—)
neo 4z Lo\ 7!

are identical in the first (2k +1) terms. A rational function
P.(z)

Fun2) =5y ™

ag+az+ayzt+azi+ -
14 bz +byz2+ bz’ + -

+a,,z™
+b,2"

is said to be the Padé (m, n)th approximation of F(z) [12]
if the polynomials P,(z) and Q,(z) are so chosen that the
coefficients in the power-series expansion of F, ,(z) agree
with those of F(z) from the constant term up to and
including the z”*" term. Thus we have proved that Z®(z)
is the Padé (k, k) approximation of Zy(z).
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B. The FFT Simulation of the Exponential
Propagation Function

Although the exponential propagation function (16c) of
a lossy transmission line can be synthesized as the voltage
transfer function of either a ladder network or a symmetri-
cal lattice network [13], we will not discuss the subject
here. Instead, we will take advantage of the extreme effi-
ciency of the FFT for deriving the waveforms of the
voltage generators:

wo(t) = F~{exp (= 0) F[20,(1) = w,(1)]} (24a)
wy(t) = F~{exp (=) F[20,(t) - w,(1)]} (24b)

for simulating the propagation delay and the attenuation
loss of a lossy transmission line. Equation (24) is the
time-domain version of (19) and {F, F™'} denote the
Fourier and inverse Fourier integrals. Unlike the discrete-
time analysis, which requires invoking the FFT routine at
every time step, the WR analysis calls for the FFT routine
after the completion of each iterative circuit simulation
and therefore reduces the overall computer simulation
time. The voltage generator waveforms are computed at
periodic time intervals {t=kAt, k=0,1,2,---,N-1,
N =127} dictated by the FFT algorithm, whereas terminal
voltage waveforms are often computed at nonuniform time
intervals since the numerical integration of circuit equa-
tions with nonuniform step sizes is more efficient. Thus
data interpolation is required. Through linear interpolation
the Fourier spectrum of terminal voltage waveforms are
computed at integral multiples of the fundamental fre-
quency fo( =1/T) by finite summation:

V()= [ "o(t)exp(— j2mmfyt)dt

T \2N-1
=( \ ) Y a Wyt

25
2am | [T, (252)

¥(0) =f0Tv(t)dt

_ (_;){(1/2)[0(0)+ o(T)] + kgl u(kT/N)}

(25b)
where
Wy = exp(j2m/N) (25¢)
ar=(N/T)[20(1;) = v(t3_1) = v(1441)] (25d)
v(T) =v(0). v(t_y) =v(ty_1) (1, =kT/N)
(25¢)

and (V(£),v()} = (Va(F ) 0a(0)}, (Va(f) 04(1)} for the
near-end and far-end terminal voltages, respectively. No-
tice that (25¢) indicates that periodic, continuous terminal
voltage waveforms are constructed from the finite discrete
data sets obtained from the circuit simulator. From (25a)
we observe that the Fourier spectrum of a linearly interpo-
lated waveform decays in inverse proportion to the square
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of the frequency if the second derivative (25d) of the
waveform is a sufficiently smooth function. Thus it be-
comes obvious that a higher order polynomial spline [14]
can be used to construct a continuous waveform whose
Fourier spectrum is almost band-limited so that the spec-
trum aliasing effect is reduced. Indeed, the Fourier spec-
trum of a periodic waveform obtained from the cubic
spline decays in inverse proportion to the fourth power of
the frequency:

V(mfy) =j(;Tv(t)eXp(—j277mf0t)dt

- 6(—T-)4Nz_:bkw,;mk (26)

2am | [Z
where { b, } are obtained by solving a tridiagonal matrix in
terms of {v(¢,)}. Both (25a) and (26) can be numerically
computed by applying the FFT [15]:

1 N-1
H(m)=— 3 h(k)wy™ (27a)
N
and the fundamental frequency (f,=1/T) can be made
smaller by choosing a time-window size (T') greater than
the actual time duration of the terminal voltage wave-
forms. Reducing f, allows more samples of low frequency
spectrum to be included in the construction of the voltage
generator waveforms (24) using the inverse FFT:

N-1

h(k)= 3, H(i)Wwy"

=0

(27b)

where

H(i) = {exp [~ 0(f )] F[20(1) = w(0)]}

as defined in (24). One should be reminded that the
spectrum aliasing effect [15] is reduced by using an almost
band-limited spectrum for reconstruction of the time-
domain waveforms.

1V. GENERALIZED METHOD OF CHARACTERISTICS
FOR WAVEFORM RELAXATION ANALYSIS
oF COUPLED L0OSSY STRIPLINES

In Section II we derived the canonical expressions of the
lossy coupled stripline terminal voltages. An iteration
scheme for generating the infinite series expansion of the
canonical solutions defined by (15) has been programmed
and implemented in a circuit simulator. We shall describe
the computational algorithm first and then the conver-
gence theorem.

The iteration algorithm can be described vividly in terms
of the disjoint, symmetrical two-part network of Fig. 5,
which is derived from the decoupled equivalent network of
Fig. 1 with each of the n decoupled lossy transmission
lines replaced by the equivalent disjoint 2-port network of
Fig. 3(b). Each part of the two-part network consists of an
identical 2n-terminal congruence transformer whose sec-
ondary terminals are connected to the identical set of n
decoupled transmission-line characteristic impedances. The
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Fig. 5. The equivalent disjoint two-part network of an n-conductor
lossy coupled transmission-line system.

congruence transformers are implemented in a circuit sim-
ulator with each of the primary terminals connecting to a
voltage-dependent voltage source and each of the sec-
ondary terminals connecting to a current-dependent cur-
rent source as defined by (5). The lossy characteristic
impedances are synthesized by the ladder anetwork of Fig.
4 with circuit elements (R, =L,/C,, C,=2/LC, /R,}
defined in terms of the decoupled lossy transmission-line
parameters. Waveforms generated by the FFT waveform
generators {wX twk i=1,2,3,---,n} are stored in the
n X m matrices w*~! and wf with (i, j)th elements desig-
nating the voltage amplitudes of the ith pair of generators
recorded at ¢ =1

[Wak—l] iy J = Wiﬁ_l(t = tj)

[W[f] 1, J = wlllci(t = tj)

where the superscript &k designates the iteration count and
the subscripts ¢ and b refer to part (a) and part (b) of the
disjoint two-part network. The terminal voltage waveforms
at the end of the kth iteration are stored in the n X m
matrices v¥ and of, with the (i, j)th elements designating
the near-end and far-end terminal voltages of the ith
conductor at £ =1

[¢£],, = cb(x=0.1=1)
[”Il:]z’fz v,"(x=l,t=tj)

where the subscripts a and b refer to the near-end and
far-end terminals of the stripline system, respectively. The
initial terminal voltages and currents are designated by the
column vectors g, Uy, ¥,9s 159, Which can be derived by
performing a dc analysis on the stripline system with each
transmission line replaced by a resistor representing the
total conductor loss of the transmission line. Exact initial
terminal characteristics are reproduced by the two-part
network by assigning the FFT waveform generators with
the initial values

w,0=X"u,0— diag((2m, +1){L,/C, ) X"i,

Wy = X 'v,o + diag((2m, + 1)L, /C,) X "ig.

These are derived by replacing each lossy characteristic

(l<isn,1<j<m)

(1<ign,1<j<m)
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impedance by the dc driving-point impedance of the equiv-
alent ladder network constructed with m, sections of sym-
metrical T networks and assigning the two-part network
with the exact terminal characteristics. Refer to Fig. 5: The
iteration algorithm is described below.
Combined MC and WR Algorithm (Gauss —Seidel Type)
Step 0: Initialize the iteration counter (k=1) and the
FFT waveform generators*:

wy T ] = (1= 0) = wy

wil;1] = wi(1,=0) = wy,

so that the waveform relaxation analysis reproduces exact
initial terminal characteristics. Generate the Fourier spec-
trum of the exponential propagation functions of the »
decoupled lossy transmission lines and store the data in
the array [H], , = exp[—- 0,(s =s))].

Step 1: Connect the terminating network A of Fig. 2 to
part (a) of the two-part network of Fig. 5 and carry out the
transient analysis for the entire time interval (0 =1¢, <7<
t,) to obtain the near-end terminal voltage waveforms
{t¥(2)}. Store the result in the matrix of.

Step 2: Compute {wi(7)} from {of(¢)} and {wr~1(¢)}
by the FFT and the inverse FFT? and store the result in
the array:

a

wik=F Y H*F[2X" ' - w1}

Step 3: Connect the terminating network B of Fig. 2 to
the part (b) of the’two-part network and carry out the
transient analysis for the entire time interval (0 <t <1t
<t,,) to obtain the far-end terminal voltage waveforms
{vk(2)}. Store the result in the matrix of.

Step 4: Update w’ in terms of {v5(¢)} and { wf(2)} by
the FFT and the inverse FFT:

wh=F Y HxF[2X "}~ wi]}.

Step 5: Stop the iteration if the iteration count exceeds
a preset integral number or if the difference between the
results obtained in successive iterations is sufficiently small.
Otherwise, set k =k +1 and go to step 1 to repeat the
iteration process.

Convergence Theorem of the Combined MC and WR
Algorithm (Gauss — Seidel Type): For an n-conductor lossy
stripline system terminating in the Thevenin’s equivalent
circuits of Fig. 2, the combined MC and WR algorithm
generates a sequence of waveforms {of(¢)},{vf(?)} con-
verging to the exact solution of the terminal voltages given
by (11).

Proof: The theorem will be verified in terms of fre-
quency-domain parameters. Refer to Figs. 2 and 5. The
kth iteration step of the MC and WR algorithm is trans-
formed into the following system of matrix difference

4A[z;] and A[;j] designate the ith row and jth column of the 4
matrix, respectively.

Term-by-term product of two matrices 4 and B of identical order is
defined as C=A * B with [C|, , =[4], , X[B], ,.
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equations:
Vi(s) = (1/2)[(1, = p) Eq+ (1, + 0,) X W 1(s)]
(28a)
XWi(s) =02V (s)- XWF1(s)] (28b)

VE(s) = (1/2)[(1,— 05) Ep + (L, + 05) XWE(5)]
(28¢)

XW[(s) = @2V (s) — XW(s)] (284)

where @ and {p,, p;} are defined in (9d) and (14). Equa-
tion (28) can be solved by successive elimination of vari-
ables, leading to the solution

Vitt=U,+ PY(s) (29a)
Vitl=Up+QVj5(s) (29b)

where { P,Q} and {U,, Uy} are identified as the propaga-
tion matrices and the equivalent voltage sources defined in
(12) and (13). From (28a), we obtain

Vils) = (/DL = ) Es+ (1, + ) X(1/5) w0
where (1/s)w,, is the vector step function generating the
correct initial near-end terminal characteristics of the
stripline system as described in step 0 of the MC and WR
algorithm. Thus by carrying out repeated substitutions into
(29a), we obtain the following sequence of waveforms:

Vi(s)=U,+ PVi(s)
Vi(s)=(1,+P)U,+ PV)(s)
Vi(s)=(1,+P+P*)U+ PV(s)

VE(s)=(1,+ P+ P2+ -+ + PF2)U, + PFVH(s)
= (In - Pkﬁl)(ln— P)AIUA“‘ PkilVAl(S)

which is identical to (15a) except for the residue term
Pk=1p1(s) related to the initial condition of the stripline
system. Similarly, we obtain

Vi(s)=(1,- 0" )(1,— Q) Uy + 0 WL(s)

which is identical to (15b) except for the residue term
Q*~W}(s). For k approaching infinity, the residue terms
vanish if the ecigenvalues of the propagation matrices
(P, Q} are confined in the left half of the s plane, which is
usually the case for a stable system. This completes the
proof of the theorem.

In the next section, a three-conductor lossy directional
coupler driven by a bipolar ECL gate is simulated to
illustrate the advantage of the waveform relaxation over
the classical discrete-time simulation.

V. WAVEFORM RELAXATION ANALYSIS OF A LOssy
DIrectiONAL COUPLER

Let us start this section by stating an important direc-
tional coupler theory. The proof and the experimental
verification of the theory can be found in [17].
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Distortionless Signal Transmission Theory: In a tricon-
ductor lossless transmission-line system of length /, wave
propagation velocity », and PUL transmission-line param-
eters { L, } and {C, }, each signal generator {e(¢), i=
1,2,3} applied to a sending terminal (x = 0) will produce
at the corresponding far-end terminal (x =1[) an output
with the identical generator waveshape if the internal
resistors {r,,} of the generators and the load resistors {7,,}
are adjusted to the values

ZA = diag(rlcv r2a7 r3a)
=r,diag [] ’(L23C13/C23L13)’ (L23C12/C23L12)] (303)

Zy = diag(ry, rpp, r3b)

= (L12L13Cz3/C12C13L23)(1/"1a)ZZA (30b)
where ry, 1s defined by the quadratic equation
ri,+ar,+ay,=0 (30¢)
with parameters
ao= (Lu/cu)(L13/C13)(C23/L23) (30d)
ay=—vLy[1+ap(Cyy/Ly)] (30e)

Under such a terminating condition, the receiving signals
across the load resistors are delayed and attenuated by the
same magnitudes:

v (t,1)=—(ag/arr,)e (t—1/v) (i=1,2,3). (31)

In the following example we shall examine the effect of
the conductor loss on such a distortionless signal transmis-
sion property of a triconductor directional coupler.

Consider a triconductor stripline system of length /=
10v2 cm, wave propagation velocity »=y2 -10' cm/s,
and transmission-line parameters

[ 3 1 05
L=|11 4 1 [nH/cm
05 1 3
4 -10 -4
C=(1/24) {—10 35 —10} pF/cm.
-4 -10 44

The center conductor and the active outer conductor are
connected to the in-phase and the out-of-phase outputs of
a bipolar ECL gate as shown in Fig. 6. The inactive outer
conductor is connected to ground via .
Case 1 — Lossless Conductors: R ~ diag(0, 0, 0)

From (30) we obtain the terminating resistors

Z,=5/2 diag(5,4,5)  Zp=12y2 diag(5,4,5) Q
(32a)
for distortionless signal transmission. The ECL gate output
signals arrive at the far-end terminals with 1 ns delay and
are attenuated by a factor of 17 /12:
0,(2,1)=(12/17)e (t —1)u(t—1) (i=1,2). (32b)

The distortionless signal transmission property can also be
verified from (11b). Thus substituting Z,, Z, and Z,=»L
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Fig. 6. A three-conductor lossy directional coupler driven by a bipolar
ECL gate.

into (14), we obtain the reflection matrices:

2 5 2
—(1/34)[4 10 4}

2 5 2

12 -5 -2

=(1/34)| -4 4 -4
-2 -5 12

which reveal the orthogonal property of the reflection
matrices p,pp=0. Equation (11b) degenerates into the
simple form
V(l)=(12/17)exp(—s7)E,(s),

which is the Laplace transform of (32b).
Case 2 — Lossy Conductors: R = diag(2,4,2) Q/cm

To obtain the equivalent decoupled circuit (Fig. 1) and
the two-part disjoint network (Fig. 5) for analyzing the
transient response of the lossy stripline system, we proceed
as follows.

Step 1: By using the Jacob1 method [16], we diagonalize
the time-constant matrix:

T=1ns

6 V2 1
T=R VAR 'V’=(Q/4)|V2 4 2
1 V2 6
=Wdiag('rl,1'2,'1'3)W-1
1 S 2
w=01/10) -2 o 2|
1 -5 2

wl=w', (3/4,5/4,2) ns.
Step 2: Let (L, L,, L;)=(5/3,5,5/2) nH/cm and ob-

tain the congruence transformer matrix:

X = RV*Wdiag /L, .f1./L; /L3 )

35 8
:(1/10)[—12 0 8}.

'rl, Ty T3

3 -5 8
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Fig. 7. Distortionless signal transmission in a lossless triconductor sys-

tem. (a) ECL gate out-of-phase output and its delayed waveform.
(b) ECL gate in-phase output and its delayed waveform.

Step 3: Obtain from (7) the decoupled transmission-line

parameters:

(L, L,, L;)=(5/3,5,5/2) nH/cm
(€1, G5, G5) = (3,1,2) pF/em
(R, R,, R;)=(20/9,4,5/4) @/cm.
Step 4: Obtain from (22) the circuit parameters:
(Ry,, R, Rs,) = (23.57,70.71,35.35) Q
(C1prCyp-Cs,) = (63.64,35.35,113.14) pF

ip°
of the symmetrical T networks for the Padé synthesis of
the characteristic impedances of the decoupled lossy trans-
mission lines.

Step 5: Derive the propagation functions of the decou-
pled lines:

{6,(s) = (st/n)T+(/sm) )
=§(y1+4/35,/1+4/55,/1+1/25)

where § = normalized angular frequency =107 jo

Shown in Figs. 7 and 8 are the ECL gate outputs and
the receiving-end waveforms simulated with and without
the conductor loss. The distortionless transmission prop-
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erty is evident in the lossless system and is remarkably
preserved even in the presence of the conductor loss. The
lossless system is simulated by the classical MC, which
takes up 15.19 seconds of computer simulation time and
uses 273 kbytes of memory, which includes 156 kbytes for
loading the circuit simulator (ICD) into the IBM 3090
computer. The penalty of using the classical MC for ana-
lyzing the lossy stripline system is severe. It took 635
seconds of CPU time and used up 2 megabytes of com-
puter memory. The waveforms in Fig. 8 are obtained by
discrete-time simulation with very small time steps, and 40
sections of lossless lines cascaded with lumped resistors are
used for simulating the distributed nature of the conductor
loss. Waveforms obtained from the iterative relaxation
analyses are shown in Fig. 9. The waveform relaxation
analyses consumed 22.1 seconds and used 233 kbytes of
memory. From the simulated waveforms, we observe that
two iterations are sufficient to obtain the convergent solu-
tions. To estimate the accuracy of the waveform relaxation
analysis, it is assumed that the waveform v(¢) obtained
from the discrete-time analysis with very small time steps
(shown in Fig. 8) is exact, and the average absolute differ-
ence between the waveforms obtained by relaxation and
discrete-time analyses:

8=[for|5(z)—u(z)1dz}//T

is defined as the absolute error of the waveform &(¢)
obtained from WR analysis. It is observed that the accu-
racy of the GMC can be enhanced by lowering the funda-
mental frequency (f,=1/7",T">T) of spectrum sam-
pling so that more samples of low frequency spectra are
included in the construction of the time-domain wave-
forms.

Table I presents the absolute errors of the (center-con-
ductor) receiving-end waveforms generated by the GMC
using various FFT samples and time-window enlargement
factors (T'/T). Observe that enlarging the time-window
size for improving the accuracy of FFT would work only if
the number of sampled data points used in the FFT were
no less than N = 256. We use the directional coupler as an
example to demonstrate the accuracy of the waveform
relaxation method. As shown in Fig 9, the receiving signal
at the far end of the inactive outer conductor has a peak
amplitude 10 times smaller than that observed at the two
ends of the center conductor. Here, the mean absolute
difference between the waveform relaxation and discrete-
time analyses is measured in tenths of millivolts. The
extreme accuracy of the waveform relaxation is achieved
by reducing the spectrum aliasing effect in the FFT by
using nearly band-limited interpolated waveforms.

VI. CONCLUSIONS

An efficient method for computing the transient re-
sponse of an r-conductor lossy coupled transmission line
system is presented. The method consists in performing
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Fig. 8. Almost distortionless signal transmission in a lossy triconductor
system. (a) ECL gate out-of-phase output and its delayed waveform.
(b) ECL gate in-phase output and its delayed waveform.

waveform relaxation analysis on the equivalent two-part
disjoint network of the coupled-line system derived from
the congruence transformation theory and the method of
characteristics. The Padé synthesis of the irrational lossy
characteristic impedance function and the fast Fourier
transform for simulating the wave propagation delay and
attenuation have been utilized to enhance the method of
characteristics for the analysis of coupled distributed net-
works. Although the method of characteristics dates back
to the 1747 classic work of D’Alembert, it was not until
Branin’s pioneering work on the analysis of an ideal trans-
mission line that it was transformed into an indispensable
tool for the computer-aided analysis of coupled distributed
networks. Here, we have opened up yet another horizon by
generalizing the method of characteristics for the wave-
form relaxation analysis. In separate articles, we shall
explore many other applications of the generalized method
of characteristics, which include waveform relaxation anal-
yses of the diode switching characteristics [18], an RLCG
transmission line [13], VLSI circuits interconnected with
coupled transmission lines [19], and nonuniform transmis-
sion lines [20].
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Fig. 9. Waveforms generated by the iterated waveform relaxation analyses. Waveforms at the far-end terminal of the (a)
active outer conductor, (b) center conductor, and (¢) inactive outer conductor.
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TABLE 1

$: absolute error(mv) % cpu

N T*/T=2 T /T=4 T’ /T=8 FFT
32 14°00 9.00 23.82 0.45
64 10.65 5.95 7.82 0.63
128 10.09 2.51 4.82 0.81
256 9.91 1.99 1.37 1.53
512 9.85 1.75 0.86 2.80
1024 9.82 1.72 0.61 4.97
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